首页> 外文OA文献 >On the asymptotic behavior of the solutions of semilinear nonautonomous equations
【2h】

On the asymptotic behavior of the solutions of semilinear nonautonomous equations

机译:关于半线性非自治系统解的渐近性   方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider nonautonomous semilinear evolution equations of the form\label{semilineq} \frac{dx}{dt}= A(t)x+f(t,x). Here $A(t)$ is a (possiblyunbounded) linear operator acting on a real or complex Banach space $\X$ and$f: \R\times\X\to\X$ is a (possibly nonlinear) continuous function. We assumethat the linear equation \eqref{lineq} is well-posed (i.e. there exists acontinuous linear evolution family \Uts such that for every $s\in\R_+$ and$x\in D(A(s))$, the function $x(t) = U(t, s) x$ is the uniquely determinedsolution of equation \eqref{lineq} satisfying $x(s) = x$). Then we can considerthe \defnemph{mild solution} of the semilinear equation \eqref{semilineq}(defined on some interval $[s, s + \delta), \delta > 0$) as being the solutionof the integral equation \label{integreq} x(t) = U(t, s)x + \int_s^t U(t,\tau)f(\tau, x(\tau)) d\tau \quad,\quad t\geq s, Furthermore, if we assume also that the nonlinear function $f(t, x)$ isjointly continuous with respect to $t$ and $x$ and Lipschitz continuous withrespect to $x$ (uniformly in $t\in\R_+$, and $f(t,0) = 0$ for all $t\in\R_+$)we can generate a (nonlinear) evolution family \Xts, in the sense that the map$t\mapsto X(t,s)x:[s,\infty)\to\X$ is the unique solution of equation\eqref{integreq}, for every $x\in\X$ and $s\in\R_+$. Considering the Green's operator $(\G f)(t)=\int_0^t X(t,s)f(s)ds$ we provethat if the following conditions hold \bullet \quad the map $\G f$ lies in$L^q(\R_+,\X)$ for all $f\in L^{p}(\R_+,\X)$, and \bullet \quad$\G:L^{p}(\R_+,\X)\to L^{q}(\R_+,\X)$ is Lipschitz continuous, i.e. thereexists $K>0$ such that $$|\G f-\G g|_{q} \leq K\|f-g\|_{p}, for all f,g\inL^p(\R_+,\X),$$ then the above mild solution will have an exponential decay.
机译:我们考虑形式为\ label {semilineq} \ frac {dx} {dt} = A(t)x + f(t,x)的非自治半线性演化方程。这里$ A(t)$是作用于实或复杂Banach空间$ \ X $和$ f的(可能无界)线性算子:\ R \ times \ X \ to \ X $是(可能是非线性的)连续函数。我们假设线性方程\ eqref {lineq}处于适当位置(即,存在一个连续的线性演化族\ Uts,使得对于每个$ s \ in \ R _ + $和$ x \ in D(A(s))$,函数$ x(t)= U(t,s)x $是方程\ eqref {lineq}的唯一确定的满足$ x(s)= x $的解。然后,我们可以将半线性方程\ eqref {semilineq}(定义在某个区间$ [s,s + \ delta),\ delta> 0 $)的\ defnemph {温和解}视为积分方程\ label { integreq} x(t)= U(t,s)x + \ int_s ^ t U(t,\ tau)f(\ tau,x(\ tau))d \ tau \ quad,\ quad t \ geq s,此外,如果我们还假设非线性函数$ f(t,x)$关于$ t $和$ x $是联合连续的,并且Lipschitz关于$ x $是连续的(一致地在$ t \ in \ R _ + $中,对于所有$ t \ in \ R _ + $),并且$ f(t,0)= 0 $,我们可以生成一个(非线性)演化族\ Xts,从某种意义上说,地图$ t \ mapsto X(t,s) x:[s,\ infty)\ to \ X $是方程式\ eqref {integreq}的唯一解,对于每个$ x \ in \ X $和$ s \ in \ R _ + $。考虑格林的算子$(\ G f)(t)= \ int_0 ^ t X(t,s)f(s)ds $,我们证明如果以下条件成立\ bullet \ quad,则地图$ \ G f $位于L ^ {p}(\ R _ +,\ X)$中所有$ f \的$ L ^ q(\ R _ +,\ X)$和\ bullet \ quad $ \ G:L ^ {p}(\ R _ +,\ X)\至L ^ {q}(\ R _ +,\ X)$是Lipschitz连续的,即存在$ K> 0 $使得$$ | \ G f- \ G g | _ {q} \ leq K \ | fg \ | _ {p},对于所有f,g \ inL ^ p(\ R _ +,\ X),$$,则上述温和解将具有指数衰减。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号